

GEO-NAVIGATION: AN AUGMENTED REALITY PERSPECTIVE

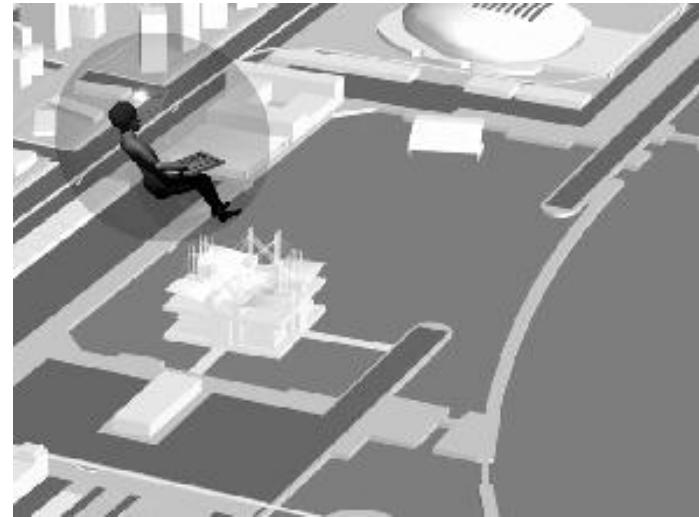
Antonio S. Camara

New University of Lisbon

asc@mail.fct.unl.pt

AGILE 2000, Espoo

Geo-Navigation and Augmented Reality


- Motivation
- Navigation
 - Wayfinding
 - Navigational tools
- Augmented reality (AR)
 - Underlying technologies
 - Geo AR applications
- Summary and conclusions

Motivation

- Mobile computing will overcome desktop computing by 2005
- Third generation mobile phones will bring wireless access to broadband Internet by 2002
- There is a need for improved navigation and exploration tools

Navigation

- Wayfinding
- Navigational tools

Wayfinding

- Wayfinding:
 - how to reach a destination
- Wayfinding stages:
 - acquiring spatial information
 - developing an overall wayfinding plan
 - plan is implemented into physical actions

Passini, R. (1992). Wayfinding in Architecture. New York: Van Nostrand Reinhold.

Spatial information

- Cognitive mapping
 - five key features:
 - paths
 - path intersections: nodes
 - landmarks
 - districts
 - boundaries

Lynch, K. (1960). *The Image of the City*. Cambridge, MA: MIT Press

Spatial information

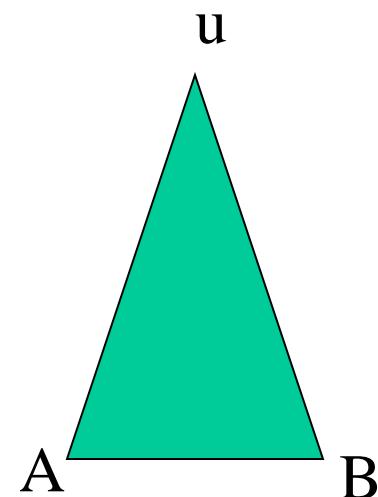
- Locational information
 - distance information
 - direction information
- Attribute information
 - descriptive attributes
 - sensory features
 - evaluative attributes
 - tags attached to places
- Time related information

Wayfinding plan

- Plan is based on:
 - landmark knowledge
 - information about specific locations
 - procedure knowledge
 - information about the sequence of actions to follow a route (starting point, anchor points, destination point)
 - survey knowledge
 - acquired from maps and other tools

Wayfinding plan

- Other factors:
 - experience
 - ability differences
 - motivation
 - environmental layout and structure


Chen, J.L. and Stanney, K. (1999). “A Theoretical Model of Wayfinding in Virtual Environments”. *Presence*, 8, 6, 671-685

Navigational tools

- Tools that can display an individual's current position
- Tools that can display an individual's current orientation
- Tools that can log an individual's movements
- Tools that augment the surrounding environment
- Guide navigational systems

Navigational tools

- Tools that display current position, orientation and log an individual's movements
 - ground-based RF systems
 - satellite based systems

Navigational tools

- Common navigational tool of choice:
 - GPS
 - accuracy within 20 meters since Clinton´s decision
 - may be augmented (i.e., Galileo initiative)
 - main problems:
 - dense urban areas
 - interiors

<http://www.gypsy.com/gpsinfo>

<http://www.cnde.iastate.edu/gps.html>

Navigational tools

- DoCoMo tool of choice:
 - SnapTrack
 - distributed server-aided DSP based processing system
 - lower cost for user (5 Euros per user)
 - up to 5 meters accuracy

<http://www.snaptrack.com>

Navigational tools

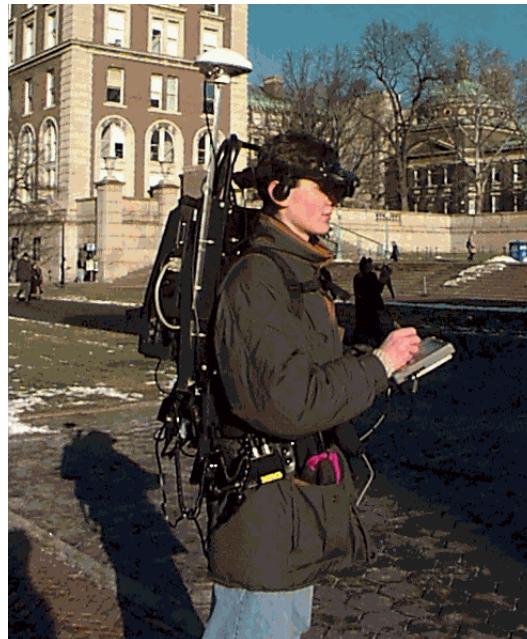
- GPS positioning system:
 - determining the code phases (pseudo-ranges) to the various GPS satellites
 - determining the time-of-applicability for the pseudo-ranges
 - demodulating the satellite navigation message
 - computing the position of the receiving antenna using the pseudo-ranges, timing and navigation message data

Navigational tools

- SnapTrack system:
 - Network of GPS reference receivers gathers navigation messages and differential corrections from all satellites in view
 - Location server receives and stores data from the GPS reference network, provides aiding data to mobile units and performs navigation solutions with the pseudo-range measurements from the handset

Navigational tools

- SnapTrack system (cont.):
 - handset receives aiding data (a list of satellites in view and their Doppler effects). These data enables the handset to extract pseudo-range information from its snapshot of GPS data


Navigational tools

- Tools that solve the positioning problems and can aid in augmenting the environment:
 - Via Digital (iilab, Nokia, Telecel, Geodan):
 - network of anchors (emitters, sensors) located in nodes and landmarks
 - anchors emit/receive codes from mobile units
 - codes are related to position and are associated to URLs
 - cost to user: 0 Euros
 - infrastructure cost: 1 Euro per anchor

Augmented reality

Superimposition of attribute information (text, static or dynamic images) on real images in real time in a mobile computing environment

Jim Vallino's site at
[http://www.cs.rit.edu/~jrv/
research.ar](http://www.cs.rit.edu/~jrv/research.ar)

Augmented reality

- Augmented Reality versus Virtual Reality
 - Advantages
 - applies real images in the background
 - minimizes “motion sickness”
 - Disadvantages:
 - requires “image registration”
 - increases system latencies (frame rate, update rate, sensor delays)

Augmented reality

- Underlying technologies
- Geo AR applications

AR underlying technologies

- AR environments need to be implemented to facilitate:
 - image registration
 - use of emitters/sensors to provide control points for rubber sheet image processing
 - real time monitoring and querying of information systems
 - use of sensors
 - access to multimedia spatial information systems

AR underlying technologies

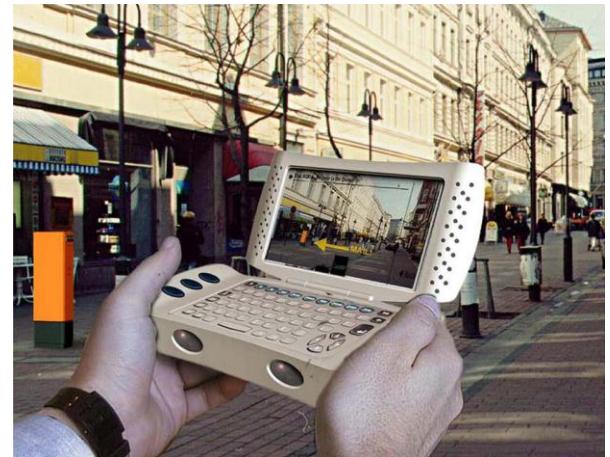
- AR environments imply:
 - emitters
 - sensors
 - displays
 - interfaces
 - multimedia geo-information processing systems and embedded databases

AR underlying technologies

- Emitters
 - visible light (information to the user)
 - video
 - laser
 - invisible (information to the system)
 - RF
 - infra-red

<http://www.infocharms.com>

AR underlying technologies


- Sensors
 - physical
 - chemical
 - biological
 - optical

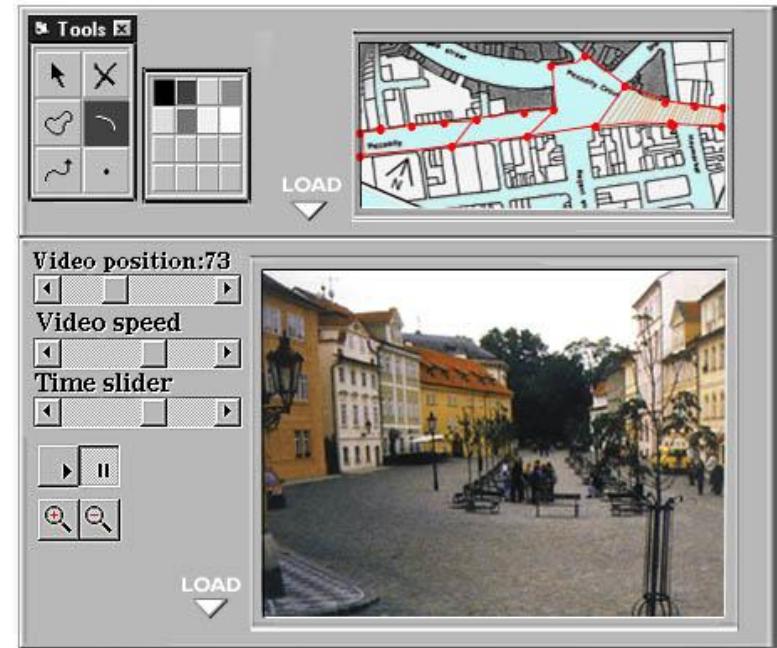
Sensors connected to portable devices
<http://www.imagiworks.com>

AR underlying technologies

- Displays
 - mobile phones
 - <http://www.ee.oulu.fi/~tino/pihvi.html>
 - head-mounted displays
 - <http://www.microopticalcorp.com>
 - any surface where images may be projected
 - <http://www.ultimatedisplays.com>

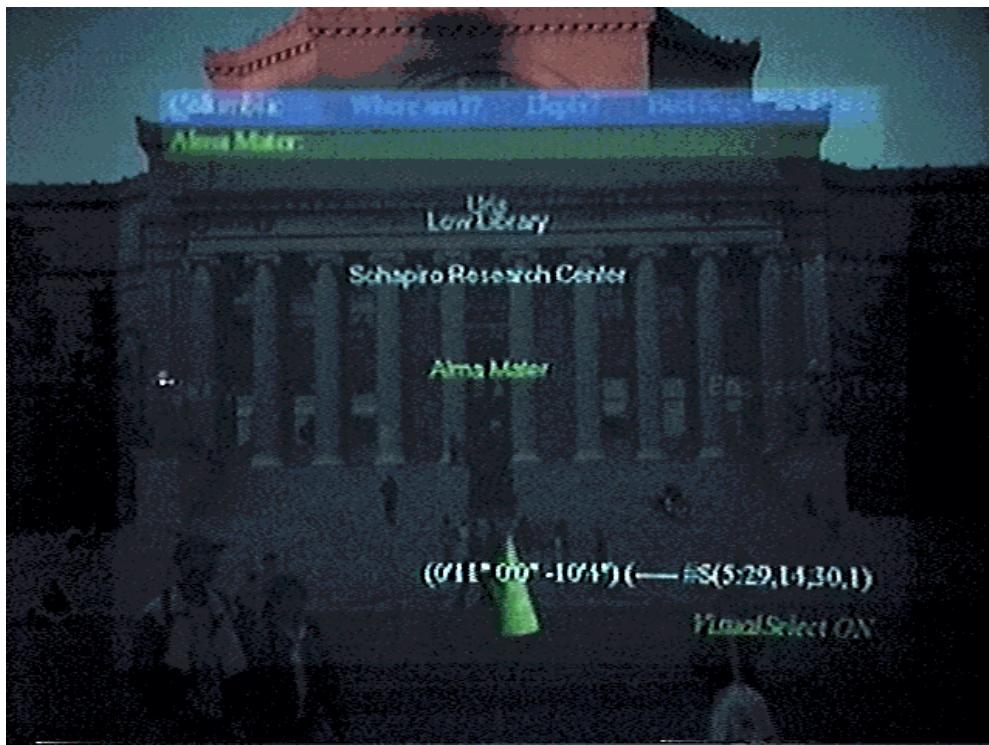
AR underlying technologies

- Interfaces
 - pen-based input
 - tangible interfaces
 - voice
 - gestures
 - eye contact



Hiroshi Ishii work at <http://media.mit.edu/~ishii>

University of Washington site em
<http://www.hitl.washington.edu>


AR underlying technologies

- Multimedia geo-information processing system
- Embedded databases in mobile devices

Geo AR applications

- Urban navigation
(<http://www.cs.columbia.edu/graphics>)

Geo AR applications

- Superimposition of the original digital terrain model on a quarry

Geo AR applications

- Visualization of underground networks in a city

Summary and conclusions

- Navigation will imply the use of augmented reality technologies
- AR's major issue is image registration in real time
- Infrastructures to support AR are needed
- AR environments as proposed here are required
- Networks of sensors/emitters will complement GPS in urban environments